
Acta Mathematica Scientia 2011,31B(6):2289–2304

http://actams.wipm.ac.cn

STABILITY OF EQUILIBRIA OF NEMATIC

LIQUID CRYSTALLINE POLYMERS∗

Dedicated to Professor Peter D. Lax on the occasion of his 85th birthday

Hong Zhou

Department of Applied Mathematics

Naval Postgraduate School, Monterey, CA 93943, USA

E-mail: hzhou@nps.edu

Hongyun Wang

Department of Applied Mathematics and Statistics

University of California, Santa Cruz, CA 95064, USA

E-mail: hongwang@soe.ucsc.edu

Abstract We provide an analytical study on the stability of equilibria of rigid rodlike

nematic liquid crystalline polymers (LCPs) governed by the Smoluchowski equation with

the Maier-Saupe intermolecular potential. We simplify the expression of the free energy

of an orientational distribution function of rodlike LCP molecules by properly selecting

a coordinate system and then investigate its stability with respect to perturbations of

orientational probability density. By computing the Hessian matrix explicitly, we are

able to prove the hysteresis phenomenon of nematic LCPs: when the normalized polymer

concentration b is below a critical value b∗ (6.7314863965), the only equilibrium state is

isotropic and it is stable; when b∗ < b < 15/2, two anisotropic (prolate) equilibrium states

occur together with a stable isotropic equilibrium state. Here the more aligned prolate

state is stable whereas the less aligned prolate state is unstable. When b > 15/2, there are

three equilibrium states: a stable prolate state, an unstable isotropic state and an unstable

oblate state.
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1 Introduction

Since its discovery by Austrian botanical physiologist Friedrich Reinitzer in 1888, liquid

crystals have spurted intensive experimental, theoretical and numerical studies [1, 5, 6, 18, 31,

39]. One notable example is that in 1991 Pierre-Gilles de Gennes was awarded the Nobel Prize
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in Physics “for discovering that methods developed for studying order phenomena in simple

systems can be generalized to more complex forms of matter, in particular to liquid crystals

and polymers”.

Liquid crystals refer to a state of matter that has properties between those of a solid crystal

and those of an isotropic liquid. For example, a liquid crystal may flow like an ordinary liquid,

but its molecules may be oriented in some directions. Examples of liquid crystals can be found

both in nature (e.g. solutions of soap and detergents) and in technological applications (e.g.

electronic displays). There are many different types of liquid crystal phases, among which one

of the most common phases is the nematic. In a nematic phase, the rod-shaped molecules have

no positional order but they display long-range directional order with their long axes roughly

aligned parallel to a common axis (which is called a “director”). Most nematics are uniaxial,

meaning that they have one axis that is longer and preferred while the other two axes are

equivalent. However, some nematics are biaxial which implies that the molecules also orient

along a secondary axis in addition to orienting their long axis. Nematics can be easily aligned

by applying an external magnetic or electric field. The optical properties of aligned nematics

make them extremely useful in liquid crystal displays.

Liquid crystallinity in polymers may occur either by heating a polymer above its melting

point (thermotropic LCPs) or by dissolving a polymer in a solvent (lyotropic LCPs). Liquid

crystalline polymers combine the properties of liquid crystals with the properites of polymers.

As a result, it is easy to guide LCPs by applying small external forces such as flows and it is

easy to control their chemical and material parameters. LCPs exhibit certain anisotropy of the

electrical, mechanical and magnetic properties with high flexibility or elasticity. They are also

exceptionally unreactive and inert, and highly resistant to fire. Due to their various properties,

LCPs have found more and more applications, including electrical and mechanical parts, food

containers, and any other applications requiring chemical inertness and super strength. A main

example of LCPs in solid form is high strength fibers which have been made into bullet-proof

vests and airbags.

The theoretical studies of liquid crystals traced back more than 60 years ago. In 1949

Onsager [29] developed a statistical theory showing that simple exclude-volume repulsions be-

tween long rods are sufficient to create a liquid crystal. Onsager’s theory is valid for dilute

liquid crystals. Flory [9, 10] presented a lattice model and his theory yields good approxima-

tion for dense and highly ordered liquid crystals. Both the Onsager and Flory theories predict

an isotropic-nematic phase transition when the concentration is high enough. In three pub-

lications Maier and Saupe [26–28] proposed a mean-field theory to explain the occurrence of

a liquid crystal phase in low molecular weight materials based on the assumption that only

induced dipolar forces are relevant for orientational ordering. An impressive signature for the

popularity of the Maier-Saupe theory is its high number of citations (almost 4000 up to now)

over the years [30]. In 1965 Landau and Ginzburg [22] developed a phenomenological theory for

liquid crystals. Even though it has success in most cases, Landau-Ginzburg theory is not exact

and it suffers failure in some cases [18]. One of the earliest constitutive theories of liquid crystals

is the Leslie-Ericksen vector theory [7, 23] in 1970s. The Leslie-Ericksen theory is attractive for

studying low molar-mass liquid crystals.

After Maier and Saupe and Flory’s work, many new theories have been developed for liquid
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crystalline polymers. One of the most famous kinetic models for polymer liquid crystals was

developed by Doi and Edwards [6] in 1980s and Hess [19]. The crucial idea of the Doi theory is to

model the polymeric molecules as a suspension of rigid rodlike nematogens and then describe the

ensemble with an orientational probability distribution function. The orientational distribution

function is governed by a nonlinear Smoluchowski (or Fokker-Planck) equation which takes into

account the hydrodynamic, Brownian and intermolecular forces.

In recent years, the Doi theory has attracted enormous mathematical attentions (for ex-

ample, [2–4, 8, 11–17, 21, 24, 25, 32–38]). One mathematical advance in the understanding

of the equilibrium states of the Doi model is the rigorous proof on that the equilibria of the

Smoluchowski equation with the Maier-Saupe potential are uniaxial [8, 24, 35]. However, it

seems more challenging to obtain a solid proof on the stability of the equilibria. The purpose

of this paper is to circumvent this difficulty and seek a mathematical proof on the stability of

the equilibria. The main result proven here is: all stable equilibria are either isotropic or highly

aligned prolate uniaxial.

2 Background and Formulation

For reader’s convenience, we start with the briefest glimpse of the Doi kinetic theory.

Let us denote the orientational direction of each rodlike molecule by a unit vector m,

the probability density function by ρ(m). The evolution of the probability density function is

described by the Smoluchowski equation [6]:

∂ρ

∂t
= D

∂

∂m
·

(
1

kBT

∂U

∂m
ρ +

∂ρ

∂m

)
, (1)

where ∂/∂m is the orientational gradient operator [1], D the rotational diffusivity, kB the

Boltzmann constant, and T the absolute temperature. For simplicity, we set kBT = 1 which is

equivalent to normalizing U by kBT .

For nematic polymers, the total potential consists of only the Maier-Saupe interaction

potential

U(m) = −b〈mm〉 : mm, (2)

where the tensor product mm and tensor double contraction A : B are defined as

mm ≡

⎡
⎢⎢⎣

m1m1 m1m2 m1m3

m2m1 m2m2 m2m3

m3m1 m3m2 m3m3

⎤
⎥⎥⎦ ,

A : B ≡ trace(AB).

In (2) the constant b is proportional to the normalized polymer concentration and it describes

the strength of inter-molecular interactions, and 〈mm〉 denotes the second moment of the

orientation distribution:

〈mm〉 ≡

∫
‖m‖=1

mm ρ(m) dm,

where ρ(m) is the orientational probability density function of the ensemble of polymer rods,

i.e., the probability density that a polymer rod has direction m.
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The Maier-Saupe potential in a properly selected coordinate system:

Let us select a coordinate system such that the second moment 〈mm〉 is diagonal:

〈mm〉 =

⎡
⎢⎢⎣
〈m2

1〉 0 0

0 〈m2
2〉 0

0 0 〈m2
3〉

⎤
⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎣

s1 +
1

3
0 0

0 s2 +
1

3
0

0 0 s3 +
1

3

⎤
⎥⎥⎥⎥⎥⎥⎦

,

where sj ≡ 〈m
2
j〉 −

1
3 satisfies

s1 + s2 + s3 = 〈m2
1 + m2

2 + m2
3〉 − 1 = 0.

In this coordinate system, the Maier-Saupe potential takes the following expression:

U(m) = −b(〈m2
1〉m

2
1 + 〈m2

2〉m
2
2 + 〈m2

3〉m
2
3)

= −
b

3
− b(s1m

2
1 + s2m

2
2 + s3m

2
3). (3)

The constant (−b/3) does not affect the dynamics or the stability of the nematic polymer

ensemble. For simplicity, we drop the constant (−b/3). From s1+s2+s3 = 0 and m2
1+m2

2+m2
3 =

1, we have

s1 =
−s3

2
−

s2 − s1

2
,

s2 =
−s3

2
+

s2 − s1

2
,

m2
1 + m2

2 = 1−m2
3.

Using these equations, we can rewrite the Maier-Saupe potential (3) as

U(m) = −b

((
−s3

2
−

s2 − s1

2

)
m2

1 +

(
−s3

2
+

s2 − s1

2

)
m2

2 + s3m
2
3

)

= −b
3 s3

2

(
m2

3 −
1

3

)
− b

(s2 − s1)

2
(m2

2 −m2
1)

= −η1

(
m2

3 −
1

3

)
− η2(m

2
2 −m2

1), (4)

where

η1 ≡ b
3 s3

2
= b

3

2

(
〈m2

3〉 −
1

3

)
, (5)

η2 ≡ b
(s2 − s1)

2
= b

1

2
〈m2

2 −m2
1〉. (6)

Note that for any orientational distribution ρ(m), by selecting a proper coordinate system, we

can always express the Maier-Saupe potential U(m) in the form of (4) with η1 and η2 given by

(5) and (6). In particular, ρ(m) does not have to be an equilibrium distribution.

The Boltzmann distribution:
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In the absence of external field, the equilibrium distributions of a nematic polymer ensemble

are described by the Boltzmann distribution [6]:

ρ(BZ)(m; η1, η2) =
exp[−U(m)]∫

S
exp[−U(m)] dm

=
exp
[
η1m

2
3 + η2(m

2
2 −m2

1)
]∫

S
exp [η1m2

3 + η2(m2
2 −m2

1)] dm
, (7)

where S represents the unit sphere. It is clear that an equilibrium distribution is completely

specified by (η1, η2). To find an equilibrium distribution, we need to determine (η1, η2). The

governing equation for (η1, η2) is obtained by combining the definition of (η1, η2) and the Boltz-

mann distribution (7):

η1 = b
3

2

∫
S

(
m2

3 −
1

3

)
ρ(BZ)(m; η1, η2) dm,

η2 = b
1

2

∫
S

(
m2

2 −m2
1

)
ρ(BZ)(m; η1, η2) dm. (8)

Note that while the Maier-Saupe potential (4) is always true, the Boltzmann distribution (7) is

valid only for equilibrium distributions. It is very important to notice this difference between

(4) and (7) especially when we consider the free energy of orientational distributions in the

stability discussion.

Equilibrium states of a nematic polymer ensemble:

It has been shown that in the absence of external field, all equilibrium states of nematic

polymers are axisymmetric [8, 24, 35]. Without loss of generality, we assume the m3-axis is the

axis of symmetry. The axisymmetry implies s1 = s2 and consequently we have η2 = 0. Thus,

an equilibrium state of nematic polymers is completely specified by η1.

To facilitate the discussion, we use r(b) to denote the value of η1 in the equilibrium state(s)

corresponding to parameter b. More specifically, we adopt the convention that η, η1 and η2

denote general variables while r(b) denotes specific value of η1 in the equilibrium state(s).

By definition r(b) is the solution of equation (8). With η2 = 0 and η1 simply denoted by

η, equation (8) becomes

η = b
3

2

∫
S

(
m2

3 −
1
3

)
exp
(
η m2

3

)
dm∫

S
exp (η m2

3) dm
. (9)

It is now convenient to introduce the function f(η) defined by

f(η) ≡
3

2η

∫
S

(
m2

3 −
1
3

)
exp
(
η m2

3

)
dm∫

S
exp (η m2

3) dm
. (10)

Then it follows at once that equation (9) can be written as [35]

η

(
1

b
− f(η)

)
= 0. (11)

First, observe that η = r0(b) = 0 is always a solution of equation (11), which corresponds to

U(m) = constant (independent of m), the isotropic equilibrium. Next, anisotropic equilibrium

states are the solutions of the equation

f(η) =
1

b
. (12)



2294 ACTA MATHEMATICA SCIENTIA Vol.31 Ser.B

Using the spherical coordinates,

m1 = sin φ cos θ,

m2 = sin φ sin θ,

m3 = cosφ, (13)

followed by the substitution u = cosφ and then applying integration by parts, we write function

f(η) as

f(η) =
3

2η

∫ π

0

(
cos2 φ− 1

3

)
exp
(
η cos2 φ

)
sin φdφ∫ π

0
exp (η cos2 φ) sin φdφ

=
3

2η

∫ 1

−1

(
u2 − 1

3

)
exp
(
η u2
)
du∫ 1

−1
exp (η u2) du

=

∫ 1

−1

(
u2 − u4

)
exp
(
η u2
)
du∫ 1

−1
exp (η u2) du

=

∫
S

(
m2

3 −m4
3

)
exp
(
η m2

3

)
dm∫

S
exp (η m2

3) dm
. (14)

In [35], we have shown that the function f(η) expressed in (14) satisfies the following properties:

1. f(0) = 2
15 ;

2. lim
η→+∞

f(η) = 0 and lim
η→−∞

f(η) = 0; in other words, f(η) tends to zero as |η| goes to

infinity.

3. f(η) attains its maximum at η∗ = 2.1782879748 > 0 where the maximum is f(η∗) =

0.14855559992254 > 0;

4. f ′(η) > 0 for η < η∗ and f ′(η) < 0 for η > η∗.

The graph of the function f(η) is depicted in Figure 1.

Fig. 1 Graph of the function f(η). A key feature of the function f(η) is that f(η) is strictly

increasing for η < η∗ (i.e. f ′(η) > 0) and strictly decreasing for η > η∗ (i.e., f ′(η) < 0)

From these properties of the function f(η), we draw conclusions listed below related to

equation (12):

• b∗ = 1
f(η∗) = 6.7314863965 is a critical value for parameter b.
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• For b < b∗, equation (12) has no solution; that is, there is no anisotropic state for b < b∗.

• At b = b∗, equation (12) has one solution r(b∗) = η∗ > 0.

• For b∗ < b < 15
2 , equation (12) attains two solutions: rU (b) > η∗ > 0 and 0 < rM (b) <

η∗. The equilibrium states corresponding to positive order parameters rU (b) and rM (b) are

called prolate states.

• At b = 15
2 , equation (12) possesses two solutions: rU ( 2

15 ) > η∗ > 0 and r( 2
15 ) = 0.

• For b > 15
2 , equation (12) has two solutions: rU (b) > η∗ > 0 and rL(b) < 0. The

equilibrium state with negative order parameter rL(b) is called oblate state.

Here we use the subscript “U” to refer to the “Upper” part of the phase diagram where r > η∗,

the subscript “M” to represent the “Middle” part of the phase diagram where 0 < r < η∗, and

the subscript “L” to denote the “Lower” part of the phase diagram where r < 0. The phase

diagram for nematic polymers is shown in Figure 2.

Fig. 2 Phase diagram of nematic polymers

In the above, we have used b as the independent variable and treated r as a function of

b. However, r(b) is a multi-valued function of b and for b < b∗ the function r(b) is not even

defined. When we study the relation between b and r, it is mathematically more convenient

if we use r as the independent variable and treat b as a function of r instead. Then, b(r) is a

single-valued function of r and is defined for all values of r in (−∞, +∞). The function b(r)

can be easily determined from equation (12) as

b(r) =
1

f(r)
. (15)

Once we know the function b(r), the branch rU (b) is simply the inverse function of b(r) for

r > η∗; the branch rM (b) is the inverse function of b(r) for 0 < r < η∗; and the branch rL(b) is

the inverse function of b(r) for r < 0.

Free energy of an orientational distribution:

The free energy of the orientational distribution ρ(m) is

G([ρ]) =

∫
S

[
log ρ(m) +

1

2
U(m, [ρ])

]
ρ(m)dm. (16)

Recall that for any ρ(m), by selecting a proper coordinate system, we can always write the
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Maier-Saupe potential U(m, [ρ]) as

U(m, [ρ]) = −η1

(
m2

3 −
1

3

)
− η2(m

2
2 −m2

1),

where η1 ≡ b 3
2

(
〈m2

3〉 −
1
3

)
and η2 ≡ b 1

2 〈m
2
2 −m2

1〉. But in general, ρ(m) is not the same as the

Boltzmann distribution

ρ(m) �= ρ(BZ)(m; η1, η2) ≡
exp
[
η1m

2
3 + η2(m

2
2 −m2

1)
]∫

S
exp [η1m2

3 + η2(m2
2 −m2

1)] dm
.

It is important to point out that even if we restrict our consideration to probability density

ρ(m) that has the form of

ρ(m) =
exp
[
q1m

2
3 + q2(m

2
2 −m2

1)
]∫

S
exp [q1m2

3 + q2(m2
2 −m2

1)] dm
,

we still have (q1, q2) �= (η1, η2) unless ρ(m) is an equilibrium distribution, which means q2 = 0

and q1 = r(b). It is tempting to replace ρ(m) by ρ(BZ)(m; η1, η2) in (16) and formally define a

function of (η1, η2)

F (η1, η2) ≡

∫
S

[
log ρ(BZ)(m; η1, η2) +

1

2

(
−η1

(
m2

3 −
1

3

)
− η2(m

2
2 −m2

1)

)]
×ρ(BZ)(m; η1, η2)dm.

Unfortunately, the assertion F (η1, η2) = G([ρ]) is valid only when ρ(m) is an equilibrium

distribution. In other words, at a fixed value of b, the assertion F (η1, η2) = G([ρ]) is true

only at a few (at most, three) equilibrium states that are well separated from each other.

Therefore, while we can try to analyze the stability of F (η1, η2) with respect to perturbations

in (η1, η2), the stability of F (η1, η2) does not inform us about the stability of G([ρ]) with respect

to perturbations in ρ(m).

3 Stability Analysis

In this section we present a detailed stability analysis on the equilibria.

To make our presentation easy to follow, we divide our approach into five steps. In the first

step, we minimize the free energy functional G([ρ]) over a set B of functions with the second

moments fixed, specified by two parameters (η1, η2). The resulting free energy is a function of

two variables G(η1, η2). The stability of G([ρ]) is equivalent to the stability of G(η1, η2). In the

second step, we show that the minimum of G([ρ]) is attained at a probability density ρ∗ of the

Boltzmann form. The coefficients (q1, q2) in the exponent of ρ∗ define a one-to-one mapping

between (η1, η2) and (q1, q2). Thus, we can rewrite G(η1, η2) as H(q1, q2). The important point

to note here is that (q1, q2) is in general different from (η1, η2) unless ρ∗ is an equilibrium

state, which is an improper assumption in stability analysis. In the third step, we compute the

Hessian matrix of H(q1, q2) with respect to (q1, q2), which is fortunately a diagonal matrix. In

the fourth step, we consider the stability of the isotropic equilibrium state. At the last step we

focus our attention on the stability of the anisotropic equilibrium states.
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Step 1 We consider the constrained minimum over the set

B(η1, η2) =

{
ρ(m)

∣∣∣∣
(
〈m2

3〉[ρ] −
1

3

)
=

2

3b
η1,
〈
m2

2 −m2
1

〉
[ρ]

=
2

b
η2

}
,

where the probability density ρ(m) is involved in the average in the following way:

〈f(m)〉[ρ] ≡

∫
S

f(m)ρ(m)dm.

The minimum of G([ρ]) over the set B(η1, η2) is a function of (η1, η2):

G(η1, η2) ≡ min
ρ(m)∈B(η1,η2)

G([ρ]). (17)

From the definition of G(η1, η2), we see that the stability of G([ρ]) with respect to ρ is the same

as the stability of G(η1, η2) with respect to (η1, η2).

Step 2 We study where G([ρ]) attains the minimum over the set B(η1, η2) and use the

result to calculate G(η1, η2). For ρ(m) ∈ B(η1, η2), we have

U(m, [ρ]) = −η1

(
m2

3 −
1

3

)
− η2(m

2
2 −m2

1),

1

2

∫
S

U(m, [ρ])ρ(m)dm =
1

2

(
−η1

〈
m2

3 −
1

3

〉
[ρ]

− η2〈m
2
2 −m2

1〉[ρ]

)

= −

(
1

3b
η2
1 +

1

b
η2
2

)
.

That is, the second term in the free energy G([ρ]) given in (16) is actually a constant over the

set B(η1, η2). It follows that we only need to look at the first term of G([ρ]) in the constrained

minimization problem. Let us denote the first term by

G1([ρ]) ≡

∫
S

log ρ(m)ρ(m)dm. (18)

The constrained minimization problem then becomes

argmin
ρ(m)∈B(η1,η2)

G1([ρ]).

Suppose the constrained minimum is attained at ρ∗(m). We consider the perturbed probability

density ρ(m) = ρ∗(m) + s Δρ(m) where Δρ(m) satisfies the following properties:∫
S

Δρ(m)dm = 0,∫
S

(
m2

3 −
1

3

)
Δρ(m)dm = 0,∫

S

(m2
2 −m2

1)Δρ(m)dm = 0. (19)

G1([ρ
∗ + s Δρ]) attaining the minimum at s = 0 implies dG1([ρ

∗+s Δρ])
ds

∣∣∣
s=0

= 0, which gives us

∫
S

log ρ∗(m)Δρ(m)dm = 0. (20)
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Since equation (20) is true for all Δρ(m) satisfying (19), it implies that

log
(

argmin
ρ(m)∈B(η1,η2)

G1([ρ])
)

= log ρ∗(m) = q0 + q1

(
m2

3 −
1

3

)
+ q2(m

2
2 −m2

1). (21)

The result of the constrained minimization given in (21) defines a mapping from (η1, η2) to

(q1, q2). The mapping from (η1, η2) to (q1, q2) is not expressed in an explicit form and it is

not immediately obvious if the mapping is single-valued. However, the inverse mapping from

(q1, q2) back to (η1, η2) is single-valued and has a simple explicit expression:

η1 = b
3

2

〈
m2

3 −
1

3

〉
,

η2 = b
1

2
〈m2

2 −m2
1〉, (22)

where the average is with respect to the probability density ρ∗(m, q1, q2) given by

ρ∗(m, q1, q2) ≡
1

Z(q1, q2)
exp

[
q1

(
m2

3 −
1

3

)
+ q2(m

2
2 −m2

1)

]
, (23)

Z(q1, q2) ≡

∫
S

exp

[
q1

(
m2

3 −
1

3

)
+ q2(m

2
2 −m2

1)

]
dm. (24)

To prepare for the computation of the Hessian matrix, we prove the following lemma,

which asserts that the mapping from (η1, η2) to (q1, q2) is also single-valued.

Lemma 1 For any fixed (η1, η2), there is only one set of (q1, q2) satisfying (22).

Proof We prove by contradiction. To accomplish this, suppose (q
(1)
1 , q

(1)
2 ) and (q

(2)
1 , q

(2)
2 )

are different from each other, and both satisfy (22).

Let ρ∗(m) ≡ ρ∗(m, q
(1)
1 , q

(1)
2 ) and Δρ(m) ≡ ρ∗(m, q

(2)
1 , q

(2)
2 )− ρ∗(m, q

(1)
1 , q

(1)
2 ).

We calculate the first and second derivatives of the function G1([ρ
∗ + s Δρ]) with respect to s

as follows:

dG1([ρ
∗ + s Δρ])

ds
=

∫
S

log(ρ∗ + s Δρ)Δρ dm,

d2G1([ρ
∗ + s Δρ])

ds2
=

∫
S

1

(ρ∗ + s Δρ)
(Δρ)2dm > 0.

Since both (q
(1)
1 , q

(1)
2 ) and (q

(2)
1 , q

(2)
2 ) satisfy (22), Δρ(m) must satisfy (19), which means

dG1([ρ
∗ + s Δρ])

ds

∣∣∣∣
s=0

=

∫
S

log(ρ∗)Δρdm = 0.

Taylor’s theorem tells us

G1([ρ
∗ + Δρ]) = G1([ρ

∗]) +
1

2

d2G1([ρ
∗ + sΔρ])

ds2

∣∣∣∣
s=ξ

> G1([ρ
∗]),

which is

G1([ρ
∗(m, q

(2)
1 , q

(2)
2 )]) > G1([ρ

∗(m, q
(1)
1 , q

(1)
2 )]). (25)

Repeating the argument with the roles of (q
(1)
1 , q

(1)
2 ) and (q

(2)
1 , q

(2)
2 ) swapped, we get

G1([ρ
∗(m, q

(1)
1 , q

(1)
2 )]) > G1([ρ

∗(m, q
(2)
1 , q

(2)
2 )]), (26)
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which contradicts with (25). Thus the claim is established: (q
(1)
1 , q

(1)
2 ) and (q

(2)
1 , q

(2)
2 ) must be

the same. �

We conclude that the mapping between (η1, η2) and (q1, q2) is one-to-one. As a result, we

can express the minimum free energy over the set B(η1, η2) as a function of (q1, q2):

H(q1, q2) ≡ min
ρ(m)∈B(η1,η2)

G([ρ])

= q1

〈
m2

3 −
1

3

〉
+ q2

〈
m2

2 −m2
1

〉
− log(Z(q1, q2))−

1

b

(
1

3
η2
1 + η2

2

)

=
2

b

(
1

3
q1η1 + q2η2

)
− log(Z(q1, q2))−

1

b

(
1

3
η2
1 + η2

2

)
, (27)

where the mapping from (q1, q2) to (η1, η2) is given in (22) and equations (16), (23) and (24)

have been invoked.

The stability of G([ρ]) with respect to ρ(m) is the same as the stability of H(q1, q2) with

respect to (q1, q2), which is determined by its Hessian matrix. The Hessian matrix (or simply

the Hessian) is just the square matrix of second-order partial derivatives of a function. It can

be used to determine the stability or instability of a system.

Step 3 We now calculate the Hessian matrix of H(q1, q2). To do so, we begin by

differentiating η1, η2 and log(Z(q1, q2)) with respect to q1 and q2. Referring to (22), (23) and

(24) and by direct computation, we obtain the following partial derivatives:

∂ρ∗(m, q1, q2)

∂q1
=

(
m2

3 −
1

3

)
ρ∗(m, q1, q2)−

〈
m2

3 −
1

3

〉
ρ∗(m, q1, q2)

= (m2
3 − 〈m

2
3〉)ρ

∗(m, q1, q2),

∂ρ∗(m, q1, q2)

∂q2
=
(
(m2

2 −m2
1)− 〈m

2
2 −m2

1〉
)
ρ∗(m, q1, q2),

∂η1

∂q1
= b

3

2

(
〈m4

3〉 − 〈m
2
3〉

2
)

> 0,

∂η1

∂q2
= b

3

2

(
〈m2

3(m
2
2 −m2

1)〉 − 〈m
2
3〉〈m

2
2 −m2

1〉
)
,

∂η2

∂q1
= b

1

2

(
〈m2

3(m
2
2 −m2

1)〉 − 〈m
2
3〉〈m

2
2 −m2

1〉
)
,

∂η2

∂q2
= b

1

2

(
〈(m2

2 −m2
1)

2〉 − 〈m2
2 −m2

1〉
2
)

> 0,

∂ log(Z(q1, q2))

∂q1
=

〈
m2

3 −
1

3

〉
=

2

3b
η1,

∂ log(Z(q1, q2))

∂q2
=
〈
m2

2 −m2
1

〉
=

2

b
η2.

Applying these results to differentiate H(q1, q2) given in (27), we get

∂H(q1, q2)

∂q1
=

2

b

(
1

3
(q1 − η1)

∂η1

∂q1
+ (q2 − η2)

∂η2

∂q1

)
,

∂H(q1, q2)

∂q2
=

2

b

(
1

3
(q1 − η1)

∂η1

∂q2
+ (q2 − η2)

∂η2

∂q2

)
.
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To determine the stability of an equilibrium state, we only need to calculate the Hessian matrix

of H(q1, q2) evaluated at the equilibrium state.

At an equilibrium state, (η1, η2)|eq satisfies equation (8). The mapping between (q1, q2)

and (η1, η2) is described in (22). Comparing (8) and (22), we conclude

(q1, q2)|eq = (η1, η2)|eq .

In addition, all equilibrium states are axisymmetric, which amounts to

q2|eq = 0.

Thus, at an equilibrium state, we have

〈m2
2 −m2

1〉
∣∣
eq

= 0,

〈m2
3(m

2
2 −m2

1)〉
∣∣
eq

= 0,

which leads to

∂η1

∂q2

∣∣∣∣
eq

= 0,

∂η2

∂q1

∣∣∣∣
eq

= 0.

Calculating the Hessian matrix of H(q1, q2) and evaluating it at the equilibrium state, we obtain

∂2H(q1, q2)

∂q2
1

∣∣∣∣
eq

=
2

3b

(
1−

∂η1

∂q1

)
∂η1

∂q1

∣∣∣∣
eq

,

∂2H(q1, q2)

∂q1∂q2

∣∣∣∣
eq

= 0,

∂2H(q1, q2)

∂q2
2

∣∣∣∣
eq

=
2

b

(
1−

∂η2

∂q2

)
∂η2

∂q2

∣∣∣∣
eq

.

Note that both ∂η1

∂q1

and ∂η2

∂q2

are positive. Consequently, the stability of H(q1, q2) is determined

by the two quantities below:

H11 ≡ 1−
∂η1

∂q1

∣∣∣∣
eq

= 1− b
3

2

(
〈m4

3〉 − 〈m
2
3〉

2
)∣∣∣∣

eq

,

H22 ≡ 1−
∂η2

∂q2

∣∣∣∣
eq

= 1− b
1

2
〈(m2

2 −m2
1)

2〉

∣∣∣∣
eq

.

Since q2|eq = 0, we can write 〈(m2
2 −m2

1)
2〉|eq as

〈(m2
2 −m2

1)
2〉|eq =

∫
S
(m2

2 −m2
1)

2 exp
(
q1m

2
3

)
dm∫

S
exp (q1m2

3) dm

=

∫ π

0 (sin2 φ)2
(

1
2π

∫ 2π

0 (cos2 θ − sin2 θ)2dθ
)

exp(q1 cos2 φ) sin φdφ∫ π

0
exp(q1 cos2 φ) sin φdφ

=
1

2
〈(1−m2

3)
2〉

∣∣∣∣
eq

.
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Thus, we write H22 as

H22 = 1− b
1

4
〈(1−m2

3)
2〉

∣∣∣∣
eq

.

Step 4 Now we turn our attention to the stability of the isotropic state, which is

described by (q1, q2)|eq = (0, 0). With the help of the spherical coordinates (13), it is straight-

forward to derive

〈m2
3〉|eq =

∫ π

0
cos2 φ sin φdφ∫ π

0 sin φdφ
=

∫ 1

0

u2du =
1

3
,

〈m4
3〉|eq =

∫ 1

0

u4du =
1

5
,

〈(1−m2
3)

2〉|eq =

∫ 1

0

(1− u2)2du =
8

15
,

H11 = 1− b
2

15
,

H22 = 1− b
2

15
.

It follows readily that the Hessian matrix evaluated at the isotropic equilibrium state is positive

definite if b < 15
2 and negative definite if b > 15

2 . Therefore, the isotropic equilibrium state is

stable for b < 15
2 whereas it is unstable for b > 15

2 .

Step 5 Finally, we close our analysis by addressing the stability of anisotropic equilib-

rium states. An anisotropic equilibrium state is described by q1 = r(b) and q2 = 0. First we

look at H11. We use the definition of function f(η) given in (10) to write

qf(q) =
3

2

∫
S

(
m2

3 −
1
3

)
exp
(
q m2

3

)
dm∫

S
exp (q m2

3) dm
=

3

2

〈
m2

3 −
1

3

〉∣∣∣∣
(q1,q2)=(q,0)

. (28)

Note that (28) is true for all values of q, not just at the equilibrium state q = r(b). Differentiating

(28) with respect to q and then evaluating it at the equilibrium state, we have

f(r(b)) + r(b)f ′(r(b)) =
3

2

(
〈m4

3〉 − 〈m
2
3〉

2
)∣∣∣∣

eq

. (29)

Since r(b) is the solution of equation (12), it satisfies f(r(b)) = 1/b. Substituting this into (29)

yields

H11 = 1− b
3

2

(
〈m4

3〉 − 〈m
2
3〉

2
)∣∣∣∣

eq

= −b r(b)f ′(r(b)).

Recall that in [35] we have derived that

f ′(η) < 0 for η > η∗ and f ′(η) > 0 for η < η∗

and recall the classification of three anisotropic branches

rU (b) > η∗, 0 < rM (b) < η∗, and rL(b) < 0,

we see that

H11 =

⎧⎪⎪⎨
⎪⎪⎩

> 0 for rU (b),

< 0 for rM (b),

> 0 for rL(b).

(30)
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Next we examine H22. Multiplying H22 by 4/b, using 1/b = f(r(b)) and the expression of f(η)

given in (14), we have

4

b
H22 = 4f(r(b))− 〈(1−m2

3)
2〉
∣∣
(q1,q2)=(r(b),0)

= 4
〈
m2

3 −m4
3

〉∣∣
(q1,q2)=(r(b),0)

− 〈(1−m2
3)

2〉
∣∣
(q1,q2)=(r(b),0)

=
〈
(1−m2

3)(5m2
3 − 1)

〉∣∣
(q1,q2)=(r(b),0)

≡ h(r(b)),

where the function h(q) is defined as

h(q) ≡
〈
(1−m2

3)(5m2
3 − 1)

〉∣∣
(q1,q2)=(q,0)

. (31)

To determine the sign of h(r(b)), we study the behavior of function h(q). We start by verifying

h(0) =

∫ 1

0

(1 − u2)(5u2 − 1)du = 0.

Next we differentiate h(q):

h′(q) =
〈
(1−m2

3)(5m2
3 − 1)(m2

3 − 〈m
2
3〉)
〉∣∣

(q1,q2)=(q,0)

=
1

5

〈
(1 −m2

3)(5m2
3 − 1)(5m2

3 − 1 + 1− 5〈m2
3〉)
〉∣∣

(q1,q2)=(q,0)

=
1

5

〈
(1 −m2

3)(5m2
3 − 1)2

〉∣∣
(q1,q2)=(q,0)

+
1

5
(1− 5〈m2

3〉)h(q). (32)

Note that the first term in h′(q) is always positive for all values of q:〈
(1−m2

3)(5m2
3 − 1)2

〉∣∣
(q1,q2)=(q,0)

> 0.

As a result, the function h(q) has the property that h′(q) > 0 wherever h(q) = 0. This property

along with h(0) = 0 implies

h(q) > 0 for q > 0 and h(q) < 0 for q < 0.

Thus, for H22, we have

H22 =
b

4
h(r(b)) =

⎧⎪⎪⎨
⎪⎪⎩

> 0 for rU (b),

> 0 for rM (b),

< 0 for rL(b).

(33)

Putting the results from (30) and (33) together, we arrive at

(H11, H22) =

⎧⎪⎪⎨
⎪⎪⎩

(+, +) for rU (b),

(−, +) for rM (b),

(+,−) for rL(b).

Therefore, only the highly aligned prolate branch rU (b) is stable while the weakly aligned prolate

branch rM (b) and the oblate branch rL(b) are unstable. More specifically, the branch rU (b) is

stable to all perturbations; the branch rM (b) is unstable with respect to perturbation in q1,

i.e., axisymmetric perturbation along the axis of symmetry. Such perturbation will drive the

system either to highly aligned prolate branch rU (b) or the isotropic branch. In contrast, the

oblate branch rL(b) is unstable with respect to perturbation in q2, i.e., perturbation away from

axisymmetry. This kind of perturbation will carry the system to the prolate state.
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4 Conclusions and Perspective Views

The stability analysis performed in this study confirms the well-known hysteresis phe-

nomenon of the equilibria of the nematic liquid crystalline polymers governed by the Smolu-

chowski equation with the Maier-Saupe intermolecular potential. In particular, the isotropic

equilibrium state is stable for b < 15/2 and it becomes unstable for b > 15/2 where b is

proportional to the normalized polymer concentration and it describes the strength of the in-

termolecular interactions. As for the anisotropic equilibrium states, only the highly aligned

prolate state is stable while the less aligned prolate state (b∗ < b < 15/2) and the oblate state

(b > 15/2) are unstable. The anisotropic states occur when b > b∗ where the critical point

b∗ = 6.7314863965.

While the mathematical study on the Smoluchowski equation with the Maier-Saupe po-

tential is getting well-developed, rigorous proofs on the similiar results for the Smoluchowski

equation with the Onsager potential remain to be explored. We end this paper by adopting a

perspective view provided by Donald, Windle and Hanna [5]: “It is clear that ‘self-assembly’,

where molecules are designed so that they organise themselves into larger scale structures in

order to achieve special properties, will be a significant objective in materials science in the

twenty-first century. The demands of nanotechnology require an ever finer control over the

molecular arrangements within new materials. The fact that liquid crystallinity itself is a form

of orientational self-assembly, coupled with the fact that the molecules in a mesophase can be

steered by external fields, means that the principles undering the science of LCPs can only grow

in significance in the years ahead.”
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